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Abstract

We sequenced the genomes of a ~7,000 year old farmer from Germany and eight ~8,000 year old 

hunter-gatherers from Luxembourg and Sweden. We analyzed these and other ancient genomes1–4 

with 2,345 contemporary humans to show that most present Europeans derive from at least three 

highly differentiated populations: West European Hunter-Gatherers (WHG), who contributed 

ancestry to all Europeans but not to Near Easterners; Ancient North Eurasians (ANE) related to 

Upper Paleolithic Siberians3, who contributed to both Europeans and Near Easterners; and Early 

European Farmers (EEF), who were mainly of Near Eastern origin but also harbored WHG-related 

ancestry. We model these populations’ deep relationships and show that EEF had ~44% ancestry 

from a “Basal Eurasian” population that split prior to the diversification of other non-African 

lineages.

Near Eastern migrants played a major role in the introduction of agriculture to Europe, as 

ancient DNA indicates that early European farmers were distinct from European hunter-

gatherers4,5 and close to present-day Near Easterners4,6. However, modelling present-day 

Europeans as a mixture of these two ancestral populations4 does not account for the fact that 

they are also admixed with a population related to Native Americans7,8. To clarify the 

prehistory of Europe, we sequenced nine ancient genomes (Fig. 1A; Extended Data Fig. 1): 

“Stuttgart” (19-fold coverage), a ~7,000 year old skeleton found in Germany in the context 

Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, 
subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms
†Correspondence and requests for materials should be addressed to David Reich (reich@genetics.med.harvard.edu) or Johannes 
Krause (johannes.krause@uni-tuebingen.de).
53Currently employed by AMGEN; 33 Kazantzaki Str, Ilioupolis 16342, Athens, Greece
83Present address: Banaras Hindu University, Varanasi, 221 005, India

Supplementary Information is linked to the online version of the paper at www.nature.com/nature. The fully public version of the 
Human Origins dataset can be found at http://genetics.med.harvard.edu/reichlab/Reich_Lab/Datasets.html. The full version of the 
dataset (including additional samples) is available to researchers who send a signed letter to DR indicating that they will abide by 
specified usage conditions (SI9).

Author contributions
BB, EEE, JBu, MS, SP, JKe, DR and JKr supervised the study. IL, NP, AM, GR, SM, KK, PHS, JGS, SC, ML, QF, HL, CdF, KP, 
WH, MMet, MMey and DR analyzed genetic data. FH, EF, DD, MF, J-MG, JW, AC and JKr obtained human remains. AM, CE, RBo, 
KB, SS, CP, NR and JKr processed ancient DNA. IL, NP, SN, NR, GA, HAB, GBa, EB, OB, RBa, GBe, HB-A, JBe, FBe, CMB, FBr, 
GBJB, FC, MC, DECC, DCor, LD, GvD, SD, J-MD, SAF, IGR, MG, MH, BH, TH, UH, ARJ, SK-Y, RKh, EK, RKi, TK, WK, VK, 
AK, LL, SL, TL, RWM, BM, EM, JMol, JMou, KN, DN, TN, LO, JP, FP, OLP, VR, FR, IR, RR, HS, ASaj, ASal, EBS, ATar, DT, 
ST, IU, OU, RVa, MVi, MVo, CW, LY, PZ, TZ, CC, MGT, AR-L, SAT, LS, KT, RVi, DCom, RS, MMet, SP and DR assembled the 
genotyping dataset. IL, NP, DR and JKr wrote the manuscript with help from all co-authors.

The aligned sequences are available through the European Nucleotide Archive under accession number PRJEB6272.

The authors declare competing financial interests: UH is an employee of Illumina, TL is an employee of AMGEN, and JM is an 
employee of 23andMe.

HHS Public Access
Author manuscript
Nature. Author manuscript; available in PMC 2015 March 18.

Published in final edited form as:
Nature. 2014 September 18; 513(7518): 409–413. doi:10.1038/nature13673.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.nature.com/authors/editorial_policies/license.html#terms
http://genetics.med.harvard.edu/reichlab/Reich_Lab/Datasets.html


of artifacts from the first widespread farming culture of central Europe, the 

Linearbandkeramik; “Loschbour” (22-fold), an ~8,000 year old skeleton from the 

Loschbour rock shelter in Luxembourg, discovered in the context of hunter-gatherer artifacts 

(SI1; SI2); and seven ~8,000 year old samples (0.01–2.4-fold) from a hunter-gatherer burial 

in Motala, Sweden (the highest coverage individual was “Motala12”).

Sequence reads from all samples revealed >20% C→T and G→A deamination-derived 

mismatches at the ends of the molecules that are characteristic of ancient DNA9,10 (SI3). We 

estimate nuclear contamination rates to be 0.3% for Stuttgart and 0.4% for Loschbour (SI3), 

and mitochondrial (mtDNA) contamination rates to be 0.3% for Stuttgart, 0.4% for 

Loschbour, and 0.01–5% for the Motala individuals (SI3). Stuttgart has mtDNA haplogroup 

T2, typical of Neolithic Europeans11, and Loschbour and all Motala individuals have the U5 

or U2 haplogroups, typical of hunter-gatherers5,9 (SI4). Stuttgart is female, while Loschbour 

and five Motala individuals are male (SI5) and belong to Y-chromosome haplogroup I, 

suggesting that this was common in pre-agricultural Europeans (SI5).

We carried out large-scale sequencing of libraries prepared with uracil DNA glycosylase 

(UDG), which removes deaminated cytosines, thus reducing errors arising from ancient 

DNA damage (SI3). The ancient individuals had indistinguishable levels of Neanderthal 

ancestry when compared to each other (~2%) and to present-day Eurasians (SI6). The 

heterozygosity of Stuttgart (0.00074) is at the high end of present-day Europeans, while that 

of Loschbour (0.00048) is lower than in any present humans (SI2), reflecting a strong 

bottleneck in Loschbour’s ancestors as the genetic data show that he was not recently inbred 

(Extended Data Fig. 2). High copy numbers for the salivary amylase gene (AMY1) have 

been associated with a high starch diet12; our data are consistent with this finding in that the 

ancient hunter gatherers La Braña (from Iberia)2, Motala12, and Loschbour had 5, 6 and 13 

copies respectively, whereas the Stuttgart farmer had 16 (SI7). Both Loschbour and Stuttgart 

had dark hair (>99% probability); and Loschbour, like La Braña and Motala12, likely had 

blue or intermediate-colored eyes (>75%) while Stuttgart likely had brown eyes (>99%) 

(SI8). Neither Loschbour nor La Braña carries the skin-lightening allele in SLC24A5 that is 

homozygous in Stuttgart and nearly fixed in Europeans today2, but Motala12 carries at least 

one copy of the derived allele, showing that this allele was present in Europe prior to the 

advent of agriculture.

We compared the ancient genomes to 2,345 present-day humans from 203 populations 

genotyped at 594,924 autosomal single nucleotide polymorphisms (SNPs) with the Human 

Origins array8 (SI9) (Extended Data Table 1). We used ADMIXTURE13 to identify 59 

“West Eurasian” populations that cluster with Europe and the Near East (SI9 and Extended 

Data Fig. 3). Principal component analysis (PCA)14 (SI10) (Fig. 1B) indicates a 

discontinuity between the Near East and Europe, with each showing north-south clines 

bridged only by a few populations of mainly Mediterranean origin. We projected15 the 

newly sequenced and previously published1–4 ancient genomes onto the first two principal 

components (PCs) (Fig. 1B). Upper Paleolithic hunter-gatherers3 from Siberia like the MA1 

(Mal’ta) individual project at the northern end of the PCA, suggesting an “Ancient North 

Eurasian” meta-population (ANE). European hunter-gatherers from Spain2, Luxembourg, 

and Sweden4 fall beyond present-day Europeans in the direction of European differentiation 
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from the Near East, and form a “West European Hunter-Gatherer” (WHG) cluster including 

Loschbour and La Braña2, and a “Scandinavian Hunter-Gatherer” (SHG) cluster including 

the Motala individuals and ~5,000 year old hunter-gatherers from the Pitted Ware Culture4. 

An “Early European Farmer” (EEF) cluster includes Stuttgart, the ~5,300 year old Tyrolean 

Iceman1 and a ~5,000 year old Swedish farmer4.

Patterns observed in PCA may be affected by sample composition (SI10) and their 

interpretation in terms of admixture events is not straightforward, so we rely on formal 

analysis of f-statistics8 to document mixture of at least three source populations in the 

ancestry of present Europeans. We began by computing all possible statistics of the form 

f3(Test; Ref1, Ref2) (SI11), which if significantly negative show unambiguously8 that Test is 

admixed between populations anciently related to Ref1 and Ref2 (we choose Ref1 and Ref2 

from 5 ancient and 192 present populations). The lowest f3-statistics for Europeans are 

negative (93% are >4 standard errors below 0), with most showing strong support for at least 

one ancient individual being one of the references (SI11). Europeans almost always have 

their lowest f3 with either (EEF, ANE) or (WHG, Near East) (SI11, Table 1, Extended Data 

Table 1), which would not be expected if there were just two ancient sources of ancestry (in 

which case the best references for all Europeans would be similar). The lowest f3-statistic for 

Near Easterners always takes Stuttgart as one of the reference populations, consistent with a 

Near Eastern origin for Stuttgart’s ancestors (Table 1). We also computed the statistic 

f4(Test, Stuttgart; MA1, Chimp), which measures whether MA1 shares more alleles with a 

Test population or with Stuttgart. This statistic is significantly positive (Extended Data Fig. 

4, Extended Data Table 1) if Test is nearly any present-day West Eurasian population, 

showing that MA1-related ancestry has increased since the time of early farmers like 

Stuttgart (the analogous statistic using Native Americans instead of MA1 is correlated but 

smaller in magnitude (Extended Data Fig. 5), indicating that MA1 is a better surrogate than 

the Native Americans who were first used to document ANE ancestry in Europe7,8). The 

analogous statistic f4(Test, Stuttgart; Loschbour, Chimp) is nearly always positive in 

Europeans and negative in Near Easterners, indicating that Europeans have more ancestry 

from populations related to Loschbour than do Near Easterners (Extended Data Fig. 4, 

Extended Data Table 1). Extended Data Table 2 documents the robustness of key f4-

statistics by recomputing them using transversion polymorphisms not affected by ancient 

DNA damage, and also using whole-genome sequencing data not affected by SNP 

ascertainment bias. Extended Data Fig. 6 shows the geographic gradients in the degree of 

allele sharing of present-day West Eurasians (as measured by f4-statistics) with Stuttgart 

(EEF), Loschbour (WHG) and MA1 (ANE).

To determine the minimum number of source populations needed to explain the data for 

many European populations taken together, we studied the matrix of all possible statistics of 

the form f4(Testbase, Testi; Obase, Oj) (SI12). Testbase is a reference European population, 

Testi is the set of all other European Test populations, Obase is a reference outgroup, and Oj 

is the set of other outgroups (ancient DNA samples, Onge, Karitiana, and Mbuti). The rank 

of the (i, j) matrix reflects the minimum number of sources that contributed to the Test 

populations16,17. For a pool of individuals from 23 Test populations representing most 

present-day European groups, this analysis rejects descent from just two sources (P<10−12 
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by a Hotelling T-test17). However, three source populations are consistent with the data after 

excluding the Spanish who have evidence for African admixture18–20 (P=0.019, not 

significant after multiple-hypothesis correction), consistent with the results from 

ADMIXTURE (SI9), PCA (Fig. 1B, SI10) and f-statistics (Extended Data Table 1, Extended 

Data Fig. 6, SI11, SI12). We caution that the finding of three sources could be consistent 

with a larger number of mixture events. Moreover, the source populations may themselves 

have been mixed. Indeed, the positive f4(Stuttgart, Test; Loschbour, Chimp) statistics 

obtained when Test is Near Eastern (Extended Data Table 1) imply that the EEF had some 

WHG-related ancestry, which was greater than 0% and as high as 45% (SI13).

We used the ADMIXTUREGRAPH software8,15 to fit a model (a tree structure augmented 

by admixture events) to the data, exploring models relating the three ancient populations 

(Stuttgart, Loschbour, and MA1) to two eastern non-Africans (Onge and Karitiana) and sub-

Saharan Africans (Mbuti). We found no models that fit the data with 0 or 1 admixture 

events, but did find a model that fit with 2 admixture events (SI14). The successful model 

(Fig. 2A) confirms the existence of MA1-related admixture in Native Americans3, but 

includes the novel inference that Stuttgart is partially (44 ± 10%) derived from a lineage that 

split prior to the separation of eastern non-Africans from the common ancestor of WHG and 

ANE. The existence of such “Basal Eurasian” admixture into Stuttgart provides a simple 

explanation for our finding that diverse eastern non-African populations share significantly 

more alleles with ancient European and Upper Paleolithic Siberian hunter-gatherers than 

with Stuttgart (that is, f4(Eastern non-African, Chimp; Hunter-gatherer, Stuttgart) is 

significantly positive), but that hunter-gatherers appear to be equally related to most eastern 

groups (SI14). We verified the robustness of the model by reanalyzing the data using the 

unsupervised MixMapper7 (SI15) and TreeMix21 software (SI16), which both identified the 

same admixture events. The ANE/WHG split must have occurred >24,000 years ago (as it 

must predate the age of MA13), and the WHG/Eastern non-African split must have occurred 

>40,000 years ago (as it must predate the Tianyuan22 individual from China which clusters 

with Asians to the exclusion of Europeans). The Basal Eurasian split must be even older, 

and might be related to early settlement of the Levant23 or Arabia24,25 prior to the 

diversification of most Eurasians, or more recent gene flow from Africa26. However, the 

Basal Eurasian population shares much of the genetic drift common to non-African 

populations after their separation from Africans, and thus does not appear to represent gene 

flow between sub-Saharan Africans and the ancestors of non-Africans after the out-of-Africa 

bottleneck (SI14).

Fitting present-day Europeans into the model, we find that few populations can be fit as 2-

way mixtures, but nearly all are compatible with 3-way mixtures of ANE/EEF/WHG (SI14). 

The mixture proportions from the fitted model (Fig. 2B; Extended Data Table 3) are 

encouragingly consistent with those obtained from a separate method that relates European 

populations to diverse outgroups using f4-statistics, assuming only that MA1 is an unmixed 

descendent of ANE, Loschbour of WHG, and Stuttgart of EEF (SI17). We infer that EEF 

ancestry in Europe today ranges from ~30% in the Baltic region to ~90% in the 

Mediterranean, consistent with patterns of identity-by-descent (IBD) sharing27,28 (SI18) and 

shared haplotype analysis (chromosome painting)29 (SI19) in which Loschbour shares more 
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segments with northern Europeans and Stuttgart with southern Europeans. Southern 

Europeans inherited their European hunter-gatherer ancestry mostly via EEF ancestors 

(Extended Data Fig. 6), while Northern Europeans acquired up to 50% of WHG ancestry 

above and beyond the WHG-related ancestry which they received through their EEF 

ancestors. Europeans have a larger proportion of WHG than ANE ancestry in general. By 

contrast, in the Near East there is no detectable WHG ancestry, but up to ~29% ANE in the 

Caucasus (SI14). A striking feature of these findings is that ANE ancestry is inferred to be 

present in nearly all Europeans today (with a maximum of ~20%), but was absent in both 

farmers and hunter-gatherers from central/western Europe during the Neolithic transition. At 

the same time, we infer that ANE ancestry was not completely absent from the larger 

European region at that time: we find that it was present in ~8,000 years old Scandinavian 

hunter-gatherers, since MA1 shares more alleles with Motala12 (SHG) than with Loschbour, 

and Motala12 fits as a mixture of 81% WHG and 19% ANE (SI14).

Two sets of European populations are poor fits for the model. Sicilians, Maltese, and 

Ashkenazi Jews have EEF estimates of >100% consistent with their having more Near 

Eastern ancestry than can be explained via EEF admixture (SI17). They also cannot be 

jointly fit with other Europeans (SI14), and they fall in the gap between European and Near 

Easterners (Fig. 1B). Finns, Mordovians and Russians (from the northwest of Russia) also 

do not fit (SI14; Extended Data Table 3) due to East Eurasian gene flow into the ancestors of 

these northeastern European populations. These populations (and Chuvash and Saami) are 

more related to East Asians than can be explained by ANE admixture (Extended Data Fig. 

7), likely reflecting a separate stream of Siberian gene flow into northeastern Europe (SI14).

Several questions will be important to address in future ancient DNA work. Where and 

when did the Near Eastern farmers admix with European hunter-gatherers to produce the 

EEF? How did the ancestors of present-day Europeans first acquire their ANE ancestry? 

Discontinuity in central Europe during the late Neolithic (~4,500 years ago) associated with 

the appearance of mtDNA types absent in earlier farmers and hunter-gatherers30 raises the 

possibility that ANE ancestry may have also appeared at this time. Finally, it is important to 

study ancient genome sequences from the Near East to provide insights into the history of 

the Basal Eurasians.

Online Methods

Archeological context, sampling and DNA extraction

The Loschbour sample stems from a male skeleton excavated in 1935 at the Loschbour rock 

shelter in Heffingen, Luxembourg. The skeleton was AMS radiocarbon dated to 7,205 ± 50 

years before present (OxA-7738; 6,220-5,990 cal BC)31. At the Palaeogenetics Laboratory 

in Mainz, material for DNA extraction was sampled from tooth 16 (an upper right M1 

molar) after irradiation with UV-light, surface removal, and pulverization in a mixer mill. 

DNA extraction took place in the palaeogenetics facilities in the Institute for Archaeological 

Sciences at the University of Tübingen. Three extracts were made in total, one from 80 mg 

of powder using an established silica based protocol32 and two additional extracts from 90 

mg of powder each with a protocol optimized for the recovery of short DNA molecules33.
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The Stuttgart sample was taken from a female skeleton excavated in 1982 at the site 

Viesenhäuser Hof, Stuttgart-Mühlhausen, Germany. It was attributed to the 

Linearbandkeramik (5,500-4,800 BC) through associated pottery artifacts and the 

chronology was corroborated by radiocarbon dating of the stratigraphy34. Both sampling and 

DNA extraction took place in the Institute for Archaeological Sciences at the University of 

Tübingen. Tooth 47 (a lower right M2 molar) was removed and material from the inner part 

was sampled with a sterile dentistry drill. An extract was made using 40 mg of bone 

powder33.

The Motala individuals were recovered from the site of Kanaljorden in the town of Motala, 

Östergötland, Sweden, excavated between 2009 and 2013. The human remains at this site 

are represented by several adult skulls and one infant skeleton. All individuals are part of a 

ritual deposition at the bottom of a small lake. Direct radiocarbon dates on the remains range 

between 7,013 ± 76 and 6,701 ± 64 BP (6,361-5,516 cal BC), corresponding to the late 

Middle Mesolithic of Scandinavia. Samples were taken from the teeth of the nine best 

preserved skulls, as well as a femur and tibia. Bone powder was removed from the inner 

parts of the teeth or bones with a sterile dentistry drill. DNA from 100 mg of bone powder 

was extracted35 in the ancient DNA laboratory of the Archaeological Research Laboratory, 

Stockholm.

Library preparation

Illumina sequencing libraries were prepared using either double- or single-stranded library 

preparation protocols36,37 (SI1). For high-coverage shotgun sequencing libraries, a DNA 

repair step with Uracil-DNA-glycosylase (UDG) and endonuclease VIII (endo VIII) 

treatment was included in order to remove uracil residues38. Size fractionation on a PAGE 

gel was also performed in order to remove longer DNA molecules that are more likely to be 

contaminants37. Positive and blank controls were carried along during every step of library 

preparation.

Shotgun sequencing and read processing

All non-UDG-treated libraries were sequenced either on an Illumina Genome Analyzer IIx 

with 2×76 + 7 cycles for the Loschbour and Motala libraries, or on an Illumina MiSeq with 

2×150 + 8 + 8 cycles for the Stuttgart library. We followed the manufacturer’s protocol for 

multiplex sequencing. Raw overlapping forward and reverse reads were merged and filtered 

for quality39 and mapped to the human reference genome (hg19/GRCh37/1000Genomes) 

using the Burrows-Wheeler Aligner (BWA)40 (SI2). For deeper sequencing, UDG-treated 

libraries of Loschbour were sequenced on 3 Illumina HiSeq 2000 lanes with 50-bp single-

end reads, 8 Illumina HiSeq 2000 lanes of 100-bp paired-end reads and 8 Illumina HiSeq 

2500 lanes of 101-bp paired-end reads. The UDG-treated library for Stuttgart was sequenced 

on 8 HiSeq 2000 lanes and 101-bp paired-end reads. The UDG-treated libraries for Motala 

were sequenced on 8 HiSeq 2000 lanes of 100-bp paired-end reads, with 4 lanes each for 

two pools (one of 3 individuals and one of 4 individuals). We also sequenced an additional 8 

HiSeq 2000 lanes for Motala12, the Motala sample with the highest percentage of 

endogenous human DNA. For the Loschbour and Stuttgart high coverage individuals, 

diploid genotype calls were obtained using the Genome Analysis Toolkit (GATK)41.
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Enrichment of mitochondrial DNA and sequencing

To test for DNA preservation and mtDNA contamination non-UDG-treated libraries of 

Loschbour and all Motala samples were enriched for human mitochondrial DNA using a 

bead-based capture approach with present-day human DNA as bait42. UDG-treatment was 

omitted in order to allow characterization of damage patterns typical for ancient DNA10. 

The captured libraries were sequenced on an Illumina Genome Analyzer IIx platform with 2 

× 76 + 7 cycles and the resulting reads were merged and quality filtered39. The sequences 

were mapped to the Reconstructed Sapiens Reference Sequence, RSRS43, using a custom 

iterative mapping assembler, MIA44 (SI4).

Contamination estimates

We assessed if the sequences had the characteristics of authentic ancient DNA using four 

approaches. First we searched for evidence of contamination by determining whether the 

sequences mapping to the mitochondrial genome were consistent with deriving from more 

than one individual44,45. Second, for the high-coverage Loschbour and Stuttgart genomes, 

we used a maximum-likelihood-based estimate of autosomal contamination that uses 

variation at sites that are fixed in the 1000 Genomes data to estimate error, heterozygosity 

and contamination46 simultaneously. Third, we estimated contamination based on the rate of 

polymorphic sites on the X chromosome of the male Loschbour individual47 (SI3) Fourth, 

we analyzed non-UDG treated reads mapping to the RSRS to search for aDNA-typical 

damage patterns resulting in C→T changes at the 5′-end of the molecule10 (SI3).

Phylogenetic analysis of the mitochondrial genomes

All nine complete mitochondrial genomes that fulfilled the criteria of authenticity were 

assigned to haplogroups using Haplofind48. A Maximum Parsimony tree including present 

day humans and previously published ancient mtDNA sequences was generated with 

MEGA49. The effect of branch shortening due to a lower number of substitutions in ancient 

lineages was studied by calculating the nucleotide edit distance to the root for all haplogroup 

R sequences (SI4).

Sex determination and Y-chromosome analysis

We assessed the sex of all sequenced individuals by using the ratio of (chrY) to (chrY

+chrX) aligned reads50. We downloaded a list of Y-chromosome SNPs curated by the 

International Society of Genetic Genealogy (ISOGG, http://www.isogg.org) v. 9.22 

(accessed Feb. 18, 2014) and determined the state of the ancient individuals at positions 

where a single allele was observed and MAPQ≥30. We excluded C/G or A/T SNPs due to 

uncertainty about the polarity of the mutation in the database. The ancient individuals were 

assigned haplogroups based on their derived state (SI5). We also used BEAST v1.7.5151 to 

assess the phylogenetic position of Loschbour using 623 males from around the world with 

2,799 variant sites across 500kb of non-recombining Y-chromosome sequence52 (SI5).

Estimation of Neanderthal admixture

We estimate Neanderthal admixture in ancient individuals with the f4-ratio or S-

statistic8,53,54 α̂ = f4(Altai, Denisova; Test, Yoruba)/f4(Altai, Denisova; Vindija, Yoruba) 
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which uses whole genome data from Altai, a high coverage (52×) Neanderthal genome 

sequence55, Denisova, a high coverage sequence37 from another archaic human population 

(31×), and Vindija, a low coverage (1.3×) Neanderthal genome from a mixture of three 

Neanderthal individuals from Vindija Cave in Croatia53.

Inference of demographic history and inbreeding

We used the Pairwise Sequentially Markovian Coalescent (PSMC)56 to infer the size of the 

ancestral population of Stuttgart and Loschbour. This analysis requires high quality diploid 

genotype calls and cannot be performed in the low-coverage Motala samples. To determine 

whether the low effective population size inferred for Loschbour is due to recent inbreeding, 

we plotted the time-to-most-recent common ancestor (TMRCA) along each of chr1-22 to 

detect runs of low TMRCA.

Analysis of segmental duplications and copy number variants

We built read-depth based copy number maps for the Loschbour, Stuttgart and Motala12 

genomes in addition to the Denisova and Altai Neanderthal genome and 25 deeply 

sequenced modern genomes55 (SI7). We built these maps by aligning reads, subdivided into 

their non-overlapping 36-bp constituents, against the reference genome using the mrsFAST 

aligner57, and renormalizing read-depth for local GC content. We estimated copy numbers 

in windows of 500 unmasked base pairs slid at 100 bp intervals across the genome. We 

called copy number variants using a scale space filter algorithm. We genotyped variants of 

interest and compared the genotypes to those from individuals sequenced as part of the 1000 

Genomes Project58.

Phenotypic inference

We inferred likely phenotypes (SI8) by analyzing DNA polymorphism data in the VCF 

format59 using VCFtools (http://vcftoools.sourceforge.net/). For the Loschbour and Stuttgart 

individuals, we included data from sites not flagged as LowQuality, with genotype quality 

(GQ) of ≥30, and SNP quality (QUAL) of ≥50. For Motala12, which is of lower coverage, 

we included sites having at least 2× coverage and that passed visual inspection of the local 

alignment using samtools tview (http://samtools.sourceforge.net)60

Human Origins dataset curation

The Human Origins array consists of 14 panels of SNPs for which the ascertainment is well 

known8,61. All population genetics analysis were carried out on a set of 594,924 autosomal 

SNPs, after restricting to sites that had >90% completeness across 7 different batches of 

sequencing, and that had >97.5% concordance with at least one of two subsets of samples 

for which whole genome sequencing data was also available. The total dataset consists of 

2,722 individuals, which we filtered to 2,345 individuals (203 populations) after removing 

outlier individuals or relatives based on visual inspection of PCA plots14,62 or model-based 

clustering analysis13. Whole genome amplified (WGA) individuals were not used in 

analysis, except for a Saami individual who we included because of the special interest of 

this population for Northeastern European population history (Extended Data Fig. 7).
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ADMIXTURE analysis

We merged all Human Origins genotype data with whole genome sequencing data from 

Loschbour, Stuttgart, MA1, Motala12, Motala_merge, and LaBrana. We then thinned the 

resulting dataset to remove SNPs in linkage-disequilibrium with PLINK 1.0763, using a 

window size of 200 SNPs advanced by 25 SNPs and an r2 threshold of 0.4. We ran 

ADMIXTURE 1.2313,64 for 100 replicates with different starting random seeds, default 5-

fold cross-validation, and varying the number of ancestral populations K between 2 and 20. 

We assessed clustering quality using CLUMPP65. We used the ADMIXTURE results to 

identify a set of 59 “West Eurasian” (European/Near Eastern) populations based on values 

of a “West Eurasian” ancestral population at K=3 (SI9). We also identified 15 populations 

for use as “non-West Eurasian outgroups” based on their having at least 10 individuals and 

no evidence of European or Near Eastern admixture at K=11, the lowest K for which Near 

Eastern/European-maximized ancestral populations appeared consistently across all 100 

replicates.

Principal Components Analysis

We used smartpca14 (version: 10210) from EIGENSOFT62,66 5.0.1 to carry out Principal 

Components Analysis (PCA) (SI10). We performed PCA on a subset on individuals and 

then projected others using the lsqproject: YES option that gives an unbiased inference of 

the position of samples even in the presence of missing data (especially important for 

ancient DNA).

f3-statistics

We use the f3-statistic8 , where ti, r1,i and 

r2,i are the allele frequencies for the ith SNP in populations Test, Ref1, Ref2, respectively, to 

determine if there is evidence that the Test population is derived from admixture of 

populations related to Ref1 and Ref2 (SI11). A significantly negative statistic provides 

unambiguous evidence of mixture in the Test population8. We allow Ref1 and Ref2 to be any 

Human Origins population with 4 or more individuals, or Loschbour, Stuttgart, MA1, 

Motala12, LaBrana. We assess significance of the f3-statistics using a block jackknife67 and 

a block size of 5cM. We report significance as the number of standard errors by which the 

statistic differs from zero (Z-score). We also perform an analysis in which we constrain the 

reference populations to be (i) EEF (Stuttgart) and WHG (Loschbour or LaBrana), (ii) EEF 

and a Near Eastern population, (iii) EEF and ANE (MA1), or (iv) any two present-day 

populations, and compute a Zdiff score between the lowest f3-statistic observed in the 

dataset, and the f3-statistic observed for the specified pair.

f4-statistics

We analyze f4-statistics8 of the form  to assess if 

populations A, B are consistent with forming a clade in an unrooted tree with respect to C, 

D. If they form a clade, the allele frequency differences between the two pairs should be 

uncorrelated and the statistic has an expected value of 0. We set the outgroup D to be a sub-

Saharan African population or Chimpanzee. We systematically tried all possible 
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combinations of the ancient samples or 15 “non-West Eurasian outgroups” identified by 

ADMIXTURE analysis as A, B, C to determine their genetic affinities (SI14). Setting A as a 

present-day test population and B as either Stuttgart or BedouinB, we documented 

relatedness to C=(Loschbour or MA1) or C=(MA1 and Karitiana) or C=(MA1 or Han) 

(Extended Data Figs. 4, 5, 7). Setting C as a test population and (A, B) a pair from 

(Loschbour, Stuttgart, MA1) we documented differential relatedness to ancient populations 

(Extended Data Fig. 6). We computed D-statistics53 using transversion polymorphisms in 

whole genome sequence data55 to confirm robustness to ascertainment and ancient DNA 

damage (Extended Data Table 2).

Minimum number of source populations for Europeans

We used qpWave16,17 to study the minimum number of source populations for a designated 

set of Europeans (SI12). We use f4-statistics of the form X(l, r) = f4(l0, l; r0, r) where l0,r0 

are arbitrarily chosen “base” populations, and l, r are other populations from two sets L and 

R respectively. If X(l, r) has rank r and there were n waves of immigration into R with no 

back-migration from R to L, then r+1 ≤ n. We set L to include Stuttgart, Loschbour, MA1, 

Onge, Karitiana, Mbuti and R to include 23 modern European populations who fit the model 

of SI14 and had admixture proportions within the interval [0,1] for the method with minimal 

modeling assumptions (SI17).

Admixture proportions for Stuttgart in the absence of a Near Eastern ancient genome

We used Loschbour and BedouinB as surrogates for “Unknown hunter-gatherer” and Near 

Eastern (NE) farmer populations that contributed to Stuttgart (SI13). Ancient Near Eastern 

ancestry in Stuttgart is estimated by the f4-ratio8,15 f4(Outgroup, X; Loschbour, 

Stuttgart)/f4(Outgroup, X; Loschbour, NE). A complication is that BedouinB is a mixture of 

NE and African ancestry. We therefore subtracted17 the effects of African ancestry using 

estimates of the BedouinB African admixture proportion from ADMIXTURE (SI9) or 

ALDER68.

Admixture graph modeling

We used ADMIXTUREGRAPH8 (version 3110) to model population relationships between 

Loschbour, Stuttgart, Onge, and Karitiana using Mbuti as an African outgroup. We assessed 

model fit using a block jackknife of differences between estimated and fitted f-statistics for 

the set of included populations (we expressed the fit as a Z score). We determined that a 

model failed if |Z|>3 for at least one f-statistic. A basic tree model failed and we manually 

amended the model to test all possible models with a single admixture event, which also 

failed. Further manual amendment to include 2 admixture events resulted in 8 successful 

models, only one of which could be amended to also fit MA1 as an additional constraint. We 

successfully fit both the Iceman and LaBrana into this model as simple clades and Motala12 

as a 2-way mixture. We also fit present-day West Eurasians as clades, 2-way mixtures, or 3-

way mixtures in this basic model, achieving a successful fit for a larger number of European 

populations (n=26) as 3-way mixtures. We estimated the individual admixture proportions 

from the fitted model parameters. To test if fitted parameters for different populations are 

consistent with each other, we jointly fit all pairs of populations A and B by modifying 
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ADMIXTUREGRAPH to add a large constant (10,000) to the variance term f3(A0, A, B). By 

doing this, we can safely ignore recent gene flow within Europe that affects statistics that 

include both A and B.

Ancestry estimates from f4-ratios

We estimate EEF ancestry using the f4-ratio8,15 f4(Mbuti, Onge; Loschbour, European)/

f4(Mbuti, Onge; Loschbour, Stuttgart), which produces consistent results with 

ADMIXTUREGRAPH (SI14). We use f4(Stuttgart, Loschbour; Onge MA1)/f4(Mbuti, MA1; 

Onge, Loschbour) to estimate Basal Eurasian admixture into Stuttgart. We use f4(Stuttgart, 

Loschbour; Onge Karitiana)/f4(Stuttgart, Loschbour; Onge MA1) to estimate ANE mixture 

in Karitiana (Fig. 2B). We use f4(Test, Stuttgart; Karitiana, Onge)/f4(MA1, Stuttgart; 

Karitiana, Onge) to lower bound ANE mixture into North Caucasian populations.

MixMapper analysis

We carried out MixMapper 2.07 analysis, a semi-supervised admixture graph fitting 

technique. First, we infer a scaffold tree of populations without strong evidence of mixture 

relative to each other (Mbuti, Onge, Loschbour and MA1). We do not include European 

populations in the scaffold as all had significantly negative f3-statistics indicating admixture. 

We then ran MixMapper to infer the relatedness of the other ancient and present-day 

samples, fitting them onto the scaffold as 2- or 3-way mixtures. The uncertainty in all 

parameter estimates is measured by block bootstrap resampling of the SNP set (100 

replicates with 50 blocks).

TreeMix analysis

We applied TreeMix21 to Loschbour, Stuttgart, Motala12, and MA13, LaBrana2 and the 

Iceman1, along with the present-day samples of Karitiana, Onge and Mbuti. We restricted 

the analysis to 265,521 Human Origins array sites after excluding any SNPs where there 

were no-calls in any of the studied individuals. The tree was rooted with Mbuti and standard 

errors were estimated using blocks of 500 SNPs. We repeated the analysis on whole-genome 

sequence data, rooting with Chimp and replacing Onge with Dai since we did not have Onge 

whole genome sequence data55. We varied the number of migration events (m) between 0 

and 5.

Inferring admixture proportions with minimal modeling assumptions

We devised a method to infer ancestry proportions from three ancestral populations (EEF, 

WHG, and ANE) without strong phylogenetic assumptions (SI17). We rely on 15 “non-

West Eurasian” outgroups and study f4(European, Stuttgart; O1, O2) which equals αβ 

f4(Loschbour, Stuttgart; O1, O2) + α(1−β) f4(MA1, Stuttgart; O1, O2) if European has 1−a 

ancestry from EEF and β, 1−β ancestry from WHG and ANE respectively. This defines a 

system of  equations with unknowns αβ, α(1−β), which we solve with least 

squares implemented in the function lsfit in R to obtain estimates of α and β. We repeated 

this computation 22 times dropping one chromosome at a time20 to obtain block jackknife67 

estimates of the ancestry proportions and standard errors, with block size equal to the 
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number of SNPs per chromosome. We assessed consistency of the inferred admixture 

proportions with those derived from the ADMIXTUREGRAPH model based on the number 

of standard errors between the two (Extended Data Table 1).

Haplotype-based analyses

We used RefinedIBD from BEAGLE 427 with the settings ibdtrim=20 and ibdwindow=25 to 

study IBD sharing between Loschbour and Stuttgart and populations from the POPRES 

dataset69. We kept all IBD tracts spanning at least 0.5 centimorgans (cM) and with a LOD 

score >3 (SI18). We also used ChromoPainter29 to study haplotype sharing between 

Loschbour and Stuttgart and present-day West Eurasian populations (SI19). We identified 

495,357 SNPs that were complete in all individuals and phased the data using Beagle 427 

with parameters phase-its=50 and impute-its=10. We did not keep sites with missing data to 

avoid imputing modern alleles into the ancient individuals. We used both unlinked (-k 1000) 

and linked modes (estimating -n and -M by sampling 10% of individuals). We combined 

ChromoPainter output for chromosomes 1-22 using ChromoCombine29. We carried out a 

PCA of the co-ancestry matrix using fineSTRUCTURE29.

Extended Data

Extended Data Figure 1. 
Photographs of analyzed ancient samples.

(A) Loschbour skull; (B) Stuttgart skull, missing the lower right M2 we sampled; (C) 

excavation at Kanaljorden in Motala, Sweden; (D) Motala 1 in situ.
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Extended Data Figure 2. 
Pairwise Sequential Markovian Coalescent (PSMC) analysis.

(A) Inference of population size as a function of time, showing a very small recent 

population size over the most recent period in the ancestry of Loschbour (at least the last 5–

10 thousand years). (B) Inferred time since the most recent common ancestor from the 

PSMC for chromosomes 20, 21, 22 (top to bottom); Stuttgart is plotted on top and 

Loschbour at bottom.
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Extended Data Figure 3. 
ADMIXTURE analysis (K=2 to K=20).

Ancient samples (Loschbour, Stuttgart, Motala_merge, Motala12, MA1, and LaBrana) are at 

left.
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Extended Data Figure 4. 
ANE ancestry is present in both Europe and the Near East but WHG ancestry is restricted to 

Europe, which cannot be due to a single admixture event.

(x-axis) We computed the statistic f4(Test, Stuttgart; MA1, Chimp), which measures where 

MA1 shares more alleles with a test population than with Stuttgart. It is positive for most 

European and Near Eastern populations, consistent with ANE (MA1-related) gene flow into 

both regions. (y-axis) We computed the statistic f4(Test, Stuttgart; Loschbour, Chimp), 

which measures whether Loschbour shares more alleles with a test sample than with 

Stuttgart. Only European populations show positive values of this statistic, providing 

evidence of WHG (Loschbour-related) admixture only in Europeans.
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Extended Data Figure 5. 
MA1 is the best surrogate for ANE for which we have data.

Europeans share more alleles with MA1 than with Karitiana, as we see from the fact that in 

a plot of f4(Test, BedouinB; MA1, Chimp) and f4(Test, BedouinB; Karitiana, Chimp), the 

European cline deviates in the direction of MA1, rather than Karitiana (the slope is >1 and 

European populations are above the line indicating equality of these two statistics).
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Extended Data Figure 6. 
The differential relatedness of West Eurasians to Stuttgart (EEF), Loschbour (WHG), and 

MA1 (ANE) cannot be explained by two-way mixture.

We plot on a West Eurasian map the statistic f4(Test, Chimp; A1, A2), where A1 and A2 are a 

pair of the three ancient samples representing the three ancestral populations of Europe. (A) 

In both Europe and the Near East/Caucasus, populations from the south have more 

relatedness to Stuttgart than those from the north where ANE influence is also important. 

(B) Northern European populations share more alleles with Loschbour than with Stuttgart, 

as they have additional WHG ancestry beyond what was already present in EEF. (C) We 

observe a striking contrast between Europe west of the Caucasus and the Near East in degree 

of relatedness to WHG. In Europe, there is a much higher degree of allele sharing with 

Loschbour than with MA1, which we ascribe to the 60–80% WHG/(WHG+ANE) ratio in 

most Europeans that we report in SI14. In contrast, the Near East has no appreciable WHG 

ancestry but some ANE ancestry, especially in the northern Caucasus. (Jewish populations 

are marked with a square in this figure to assist in interpretation as their ancestry is often 

anomalous for their geographic regions.)
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Extended Data Figure 7. 
Evidence for Siberian gene flow into far northeastern Europe.

Some northeastern European populations (Chuvash, Finnish, Russian, Mordovian, Saami) 

share more alleles with Han Chinese than with other Europeans who are arrayed in a cline 

from Stuttgart to Lithuanians/Estonians in a plot of f4(Test, BedouinB; Han, Mbuti) against 

f4(Test, BedouinB; MA1, Mbuti).

Extended Data Table 1

West Eurasians genotyped on the Human Origins array and key f-statistics.

Sampling Location Lowest f3(X; Ref1, Ref2) Lowest f3(X; EEF, WHG)
(Z<0 and Zdiff<3 reported)

Lowest f3(X; Near East, WHG)
(Z<0 and Zdiff<3 reported)

Lowest f3(X; EEF, ANE)
(Z<0 and Zdiff<3 reported)

f4(Stuttgart, X;
Loschbour, Chimp)

f4(Stuttgart, X;
MA1, Chimp)

X N Lat. Long. Ref1 Ref2 statistic Z Ref1 Ref2 statistic Z Zdiff Ref1 Ref2 statistic Z Zdiff Ref1 Ref2 statistic Z Zdiff statistic Z statistic Z

Abkhasian 9 43 41.02 Stu MA1 −0.0053 −2.9 Georgian LaB −0.0004 −0.5 2.6 Stu MA1 −0.0053 −2.9 0.0 0.0020 4.2 −0.0023 −4.7

Adygei 17 44 39 Piapoco Stu −0.0073 −5.9 Stu MA1 −0.0067 −4.1 0.3 0.0013 2.6 −0.0029 −6.0

Albanian 6 41.33 19.83 Stu MA1 −0.0121 −7.0 Iraqi_Jew Los −0.0090 −9.1 1.7 Stu MA1 −0.0121 −7.0 0.0 −0.0009 −1.8 −0.0027 −5.4

Armenian 10 40.19 44.55 GujaratiC Stu −0.0070 −8.2 Stu MA1 −0.0068 −4.1 0.1 0.0022 4.5 −0.0016 −3.3

Ashkenazi_Jew 7 52.23 21.02 Stu MA1 −0.0057 −3.4 Iraqi_Jew Los −0.0042 −4.7 1.0 Stu MA1 −0.0057 −3.4 0.0 0.0008 1.7 −0.0010 −2.0

Balkar 10 43.48 43.62 Piapoco Stu −0.0113 −8.9 Stu MA1 −0.0092 −5.5 1.1 0.0014 2.9 −0.0027 −5.6

Basque 29 43.04 −0.65 Iraqi_Jew Los −0.0083 −10.3 Stu Los −0.0061 −3.8 1.3 Iraqi_Jew Los −0.0083 −10.3 0.0 Stu MA1 −0.0041 −2.4 2.2 −0.0034 −7.2 −0.0032 −6.7

BedouinA 25 31 35 Esan Stu −0.0162 −18.2 0.0062 13.0 0.0026 5.4

BedouinB 19 31 35 Esan Stu 0.0089 7.8 0.0046 9.3 0.0019 3.9

Belarusian 10 53.92 28.01 Georgian Los −0.0133 −17.6 Georgian Los −0.0133 −17.6 0.0 Stu MA1 −0.0102 −6.1 1.9 −0.0035 −6.9 −0.0042 −8.6

Bergamo 12 46 10 Stu MA1 −0.0106 −6.2 Stu Los −0.0068 −4.2 1.7 Iraqi_Jew Los −0.0100 −11.9 0.3 Stu MA1 −0.0106 −6.2 0.0 −0.0018 −3.9 −0.0028 −5.8

Bulgarian 10 42.16 24.74 Stu MA1 −0.0130 −8.2 Stu LaB −0.0074 −4.5 2.8 Iraqi_Jew Los −0.0106 −12.4 1.5 Stu MA1 −0.0130 −8.2 0.0 −0.0012 −2.5 −0.0028 −5.9

Chechen 9 43.33 45.65 Stu MA1 −0.0056 −3.2 Georgian Los −0.0002 −0.3 2.8 Stu MA1 −0.0056 −3.2 0.0 0.0011 2.3 −0.0031 −6.2

Croatian 10 43.51 16.45 Stu MA1 −0.0114 −6.7 Stu Los −0.0065 −3.8 2.1 Iraqi_Jew Los −0.0112 −13.0 0.2 Stu MA1 −0.0114 −6.7 0.0 −0.0023 −4.7 −0.0035 −7.4

Cypriot 8 35.13 33.43 Stu MA1 −0.0057 −3.2 Yemenite_Jew Los −0.0013 −1.5 2.5 Stu MA1 −0.0057 −3.2 0.0 0.0019 3.9 −0.0012 −2.5

Czech 10 50.1 14.4 Georgian Los −0.0137 −17.9 Stu Los −0.0088 −5.3 3.0 Georgian Los −0.0137 −17.9 0.0 Stu MA1 −0.0121 −7.2 0.9 −0.0032 −6.6 −0.0040 −8.2

Druze 39 32 35 Stu MA1 −0.0024 −1.5 Stu MA1 −0.0024 −1.5 0.0 0.0028 5.9 −0.0006 −1.3

English 10 50.75 −2.09 Iraqi_Jew Los −0.0129 −14.8 Stu Los −0.0090 −5.5 2.2 Iraqi_Jew Los −0.0129 −14.8 0.0 Stu MA1 −0.0125 −7.4 0.1 −0.0032 −6.5 −0.0041 −8.5

Estonian 10 58.54 24.89 Abkhasian Los −0.0124 −15.1 Abkhasian Los −0.0124 −15.1 0.0 Stu MA1 −0.0094 −5.6 1.9 −0.0043 −8.5 −0.0051 −10.1
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Sampling Location Lowest f3(X; Ref1, Ref2) Lowest f3(X; EEF, WHG)
(Z<0 and Zdiff<3 reported)

Lowest f3(X; Near East, WHG)
(Z<0 and Zdiff<3 reported)

Lowest f3(X; EEF, ANE)
(Z<0 and Zdiff<3 reported)

f4(Stuttgart, X;
Loschbour, Chimp)

f4(Stuttgart, X;
MA1, Chimp)

X N Lat. Long. Ref1 Ref2 statistic Z Ref1 Ref2 statistic Z Zdiff Ref1 Ref2 statistic Z Zdiff Ref1 Ref2 statistic Z Zdiff statistic Z statistic Z

Finnish 7 60.2 24.9 Abkhasian Los −0.0102 −11.3 Abkhasian Los −0.0102 −11.3 0.0 Stu MA1 −0.0078 −4.4 1.4 −0.0035 −6.9 −0.0045 −9.1

French 25 46 2 Stu MA1 −0.0131 −8.4 Stu Los −0.0098 −6.3 1.5 Iraqi_Jew Los −0.0129 −16.8 0.2 Stu MA1 −0.0131 −8.4 0.0 −0.0027 −5.6 −0.0036 −7.7

French_South 7 43.44 −0.62 Iraqi_Jew Los −0.0095 −9.5 Stu LaB −0.0089 −5.0 0.3 Iraqi_Jew Los −0.0095 −9.5 0.0 Stu MA1 −0.0086 −4.8 0.4 −0.0030 −6.2 −0.0031 −6.2

Georgian 10 42.5 41.85 GujaratiC Stu −0.0036 −4.0 Stu MA1 −0.0036 −2.1 −0.2 0.0020 4.2 −0.0019 −3.9

Georgian_Jew 7 41.72 44.78 GujaratiC Stu −0.0009 −0.9 Stu MA1 −0.0002 −0.1 0.3 0.0022 4.3 −0.0017 −3.4

Greek 20 39.84 23.17 Stu MA1 −0.0118 −7.4 Iraqi_Jew Los −0.0080 −11.1 2.3 Stu MA1 −0.0118 −7.4 0.0 −0.0004 −0.9 −0.0026 −5.6

Hungarian 20 47.49 19.08 Stu MA1 −0.0133 −8.4 Stu Los −0.0087 −5.6 2.2 Iraqi_Jew Los −0.0127 −15.9 0.4 Stu MA1 −0.0133 −8.4 0.0 −0.0025 −5.3 −0.0037 −7.8

Icelandic 12 64.13 −21.93 Abkhasian Los −0.0121 −15.6 Stu Los −0.0078 −4.8 2.7 Abkhasian Los −0.0121 −15.6 0.0 Stu MA1 −0.0097 −5.9 1.5 −0.0038 −7.7 −0.0043 −8.9

Iranian 8 35.59 51.46 Piapoco Stu −0.0094 −7.2 Stu MA1 −0.0087 −5.2 0.4 0.0031 6.3 −0.0016 −3.2

Iranian_Jew 9 35.7 51.42 GujaratiC Stu −0.0018 −2.0 Stu MA1 −0.0012 −0.6 0.2 0.0028 5.7 −0.0011 −2.2

Iraqi_Jew 6 33.33 44.42 Vishwabrahmin Stu −0.0026 −2.6 Stu MA1 −0.0009 −0.5 0.9 0.0030 6.1 −0.0005 −1.0

Jordanian 9 32.05 35.91 Esan Stu −0.0145 −14.3 0.0048 9.6 0.0014 2.8

Kumyk 8 43.25 46.58 Piapoco Stu −0.0111 −8.2 Stu MA1 −0.0109 −6.5 0.1 0.0015 3.1 −0.0028 −5.7

Lebanese 8 33.82 35.57 Esan Stu −0.0105 −9.4 Stu MA1 −0.0068 −3.9 1.9 0.0038 7.7 0.0002 0.4

Lezgin 9 42.12 48.18 Stu MA1 −0.0100 −6.0 Stu MA1 −0.0100 −6.0 0.0 0.0013 2.7 −0.0037 −7.5

Libyan_Jew 9 32.92 13.18 Esan Stu −0.0051 −4.4 Stu MA1 0.0000 0.0 2.7 0.0030 6.2 0.0004 0.9

Lithuanian 10 54.9 23.92 Abkhasian Los −0.0119 −14.9 Abkhasian Los −0.0119 −14.9 0.0 Stu MA1 −0.0069 −3.9 2.8 −0.0045 −9.0 −0.0048 −9.9

Maltese 8 35.94 14.38 Stu MA1 −0.0086 −4.9 Yemenite_Jew Los −0.0051 −6.0 2.0 Stu MA1 −0.0086 −4.9 0.0 0.0013 2.7 −0.0011 −2.3

Mordovian 10 54.18 45.18 Abkhasian Los −0.0115 −14.4 Abkhasian Los −0.0115 −14.4 0.0 Stu MA1 −0.0113 −6.6 0.3 −0.0028 −5.5 −0.0044 −9.0

Moroccan_Jew 6 34.02 −6.84 Esan Stu −0.0062 −5.2 Yemenite_Jew Los −0.0021 −2.2 2.9 Stu MA1 −0.0032 −1.7 1.4 0.0021 4.3 −0.0001 −0.1

North_Ossetian 10 43.02 44.65 Piapoco Stu −0.0093 −7.2 Stu MA1 −0.0076 −4.4 1.0 0.0014 2.9 −0.0028 −5.6

Norwegian 11 60.36 5.36 Georgian Los −0.0120 −14.8 Georgian Los −0.0120 −14.8 0.0 Stu MA1 −0.0093 −5.4 1.4 −0.0035 −7.3 −0.0042 −8.7

Orcadian 13 59 −3 Armenian Los −0.0102 −13.4 Stu Los −0.0059 −3.6 2.5 Armenian Los −0.0102 −13.4 0.0 Stu MA1 −0.0098 −5.9 0.5 −0.0032 −6.7 −0.0042 −8.6

Palestinian 38 32 35 Esan Stu −0.0120 −13.2 0.0047 10.2 0.0014 3.1

Russian 22 61 40 Chukchi Los −0.0119 −11.3 Abkhasian Los −0.0119 −17.1 0.0 Stu MA1 −0.0106 −6.6 0.8 −0.0030 −6.2 −0.0046 −9.4

Sardinian 27 40 9 Stu LaB −0.0044 −2.6 Stu LaB −0.0044 −2.6 0.0 Iraqi_Jew Los −0.0033 −4.2 0.0 Stu MA1 −0.0035 −2.1 0.3 −0.0016 −3.4 −0.0015 −3.3

Saudi 8 18.49 42.52 Kgalagadi Stu −0.0042 −3.6 0.0042 8.6 0.0015 3.1

Scottish 4 56.04 −3.94 Iraqi_Jew Los −0.0103 −8.3 Iraqi_Jew Los −0.0103 −8.3 0.0 Stu MA1 −0.0090 −4.7 0.7 −0.0034 −6.4 −0.0045 −8.7

Sicilian 11 37.59 13.77 Stu MA1 −0.0108 −6.5 Yemenite_Jew Los −0.0066 −8.1 2.4 Stu MA1 −0.0108 −6.5 0.0 0.0006 1.3 −0.0015 −3.2

Spanish 53 40.43 −2.83 Iraqi_Jew Los −0.0126 −17.8 Stu Los −0.0104 −6.8 1.4 Iraqi_Jew Los −0.0126 −17.8 0.0 Stu MA1 −0.0120 −7.6 0.3 −0.0019 −4.2 −0.0024 −5.2

Spanish_North 5 42.8 −2.7 Iraqi_Jew Los −0.0112 −9.9 Stu Los −0.0102 −5.4 0.5 Iraqi_Jew Los −0.0112 −9.9 0.0 Stu MA1 −0.0082 −4.4 1.3 −0.0035 −6.9 −0.0032 −6.4

Syrian 8 35.13 36.87 Esan Stu −0.0101 −8.7 0.0044 8.6 0.0012 2.4

Tunisian_Jew 7 36.8 10.18 Gambian Stu −0.0026 −2.0 0.0026 5.2 0.0002 0.5

Turkish 56 39.22 32.66 Piapoco Stu −0.0129 −11.3 Stu MA1 −0.0106 −6.9 1.3 0.0018 3.8 −0.0019 −4.0

Turkish_Jew 8 41.02 28.95 Stu MA1 −0.0075 −4.3 Yemenite_Jew Los −0.0049 −5.8 1.4 Stu MA1 −0.0075 −4.3 0.0 0.0017 3.6 −0.0006 −1.3

Tuscan 8 43 11 Stu MA1 −0.0109 −6.4 Stu Los −0.0055 −3.2 2.3 Iraqi_Jew Los −0.0092 −10.1 0.9 Stu MA1 −0.0109 −6.4 0.0 −0.0011 −2.2 −0.0024 −5.0

Ukrainian 9 50.29 31.56 Georgian Los −0.0134 −16.7 Georgian Los −0.0134 −16.7 0.0 Stu MA1 −0.0114 −6.6 1.3 −0.0032 −6.4 −0.0041 −8.5

Yemenite_Jew 8 15.35 44.2 Esan Stu −0.0027 −2.4 0.0046 9.1 0.0013 2.6

Note: Zdiff is the number of standard errors of the difference between the lowest f3-statistic over all reference pairs and the 

lowest f3-statistic for a subset of reference pairs.

Abbreviations used: Stu: Stuttgart; Los: Loschbour; LaB: LaBrana.

Extended Data Table 2

Confirmation of key findings on transversions and on whole genome sequence data.

Interpretation

D(A, B; C, D) on Human Origins genotype data D(A, B; C, D) on whole genome sequence data transversions

A B C D

594,924 SNPs 110,817 transversions

A B C D statistic Zstatistic Z statistic Z

Stuttgart has 
Near Eastern 
ancestry

Stuttgart Armenian Loschbour Chimp 0.0219 4.5 0.0189 2.9

Europeans 
have more 
WHG-related 
ancestry than 
Stuttgart

Stuttgart French Loschbour Chimp −0.0266 −5.7 −0.031 −5.0 Stuttgart French2 Loschbour Chimp −0.03 −4.7

Lithuanian Stuttgart Loschbour Chimp 0.0446 9.1 0.0477 7.2

West 
Eurasians have 
more ANE-
related 
ancestry than 
Stuttgart

French Stuttgart MA1 Chimp 0.0367 7.7 0.0386 5.5 French2 Stuttgart MA1 Chimp 0.037 6.4

Lezgin Stuttgart MA1 Chimp 0.0372 7.6 0.0409 5.6

MA1 is a 
better 
surrogate of 
ANE ancestry 
than Karitiana

French Chimp MA1 Karitiana 0.0207 4.5 0.0214 2.8 French2 Chimp MA1 Karitiana2 0.026 3.8
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Interpretation

D(A, B; C, D) on Human Origins genotype data D(A, B; C, D) on whole genome sequence data transversions

A B C D

594,924 SNPs 110,817 transversions

A B C D statistic Zstatistic Z statistic Z

Eastern non-
Africans closer 
to 
WHG/ANE/S
HG than to 
EEF

Loschbour Stuttgart Onge Chimp 0.0196 3.5 0.0202 2.5

Loschbour Stuttgart Papuan Chimp 0.0142 2.6 0.0127 1.5 Loschbour Stuttgart Papuan2 Chimp 0.017 2.7

Loschbour Stuttgart Dai Chimp 0.0164 3.2 0.021 2.8 Loschbour Stuttgart Dai2 Chimp 0.018 2.9

MA1 Stuttgart Papuan Chimp 0.0139 2.2 0.0103 1.0 MA1 Stuttgart Papuan2 Chimp 0.018 2.8

MA1 Stuttgart Dai Chimp 0.0174 3.0 0.016 1.7 MA1 Stuttgart Dai2 Chimp 0.028 4.3

Motala12 Stuttgart Papuan Chimp 0.0182 3.2 0.011 1.1 Motala12 Stuttgart Papuan2 Chimp 0.023 3.7

Motala12 Stuttgart Dai Chimp 0.0156 2.8 0.0149 1.6 Motala12 Stuttgart Dai2 Chimp 0.02 3.2

LaBrana Stuttgart Papuan Chimp 0.0123 2.3 0.0101 1.1 LaBrana Stuttgart Papuan2 Chimp 0.02 3.2

LaBrana Stuttgart Dai Chimp 0.0149 2.9 0.0228 2.5 LaBrana Stuttgart Dai2 Chimp 0.024 3.7

Native 
Americans 
closer to ANE 
than to WHG

Karitiana Chimp MA1 Loschbour 0.0467 7.1 0.0467 4.4 Karitiana2 Chimp MA1 Loschbour 0.052 7.1

West 
Eurasians 
closer to 
Native 
Americans 
than to other 
Eastern non-
Africans

Stuttgart Chimp Karitiana Papuan 0.0559 10.9 0.0474 6.6 Stuttgart Chimp Karitiana2 Papuan2 0.052 7.6

Stuttgart Chimp Karitiana Onge 0.0237 5.1 0.0179 2.6

Ancient 
Eurasian 
hunter-
gatherers 
equally related 
to Eastern non-
Africans other 
than Native 
Americans

Loschbour MA1 Dai Chimp −0.0015 −0.2 0.0016 0.2 Loschbour MA1 Dai2 Chimp −0.013 −1.9

Loschbour MA1 Papuan Chimp 0.0002 0.0 0.0012 0.1 Loschbour MA1 Papuan2 Chimp −0.003 −0.4

Loschbour Motala12 Dai Chimp 0.0024 0.4 0.009 0.9 Loschbour Motala12 Dai2 Chimp −0.002 −0.3

Loschbour Motala12 Papuan Chimp −0.0028 −0.4 0.0046 0.5 Loschbour Motala12 Papuan2 Chimp −0.004 −0.6

MA1 Motala12 Dai Chimp 0.0026 0.4 0.0047 0.4 MA1 Motala12 Dai2 Chimp 0.01 1.5

MA1 Motala12 Papuan Chimp −0.0047 −0.7 −0.001 −0.1 MA1 Motala12 Papuan2 Chimp −0.004 −0.5

LaBrana and 
Loschbour are 
a clade

LaBrana Loschbour Dai Chimp −0.0028 −0.5 0.0024 0.3 LaBrana Loschbour Dai2 Chimp 0.007 1.1

LaBrana Loschbour Papuan Chimp −0.0031 −0.5 −0.0012 −0.1 LaBrana Loschbour Papuan2 Chimp 0.002 0.3

LaBrana Loschbour MA1 Chimp −0.006 −0.8 0.0101 0.7 LaBrana Loschbour MA1 Chimp 0.005 0.7

SHG closer to 
ANE than to 
WHG

Motala12 Loschbour MA1 Chimp 0.0425 5.3 0.0353 2.6 Motala12 Loschbour MA1 Chimp 0.042 5.9

Motala12 LaBrana MA1 Chimp 0.0465 5.8 0.0347 2.4 Motala12 LaBrana MA1 Chimp 0.038 5.4

LaBrana and 
Loschbour 
equally related 
to Stuttgart

LaBrana Loschbour Stuttgart Chimp −0.0176 −2.6 −0.0106 −1.0 LaBrana Loschbour Stuttgart Chimp −0.012 −1.8

Extended Data Table 3

Admixture proportions for European populations. The estimates from the model with 

minimal assumptions are from SI17. The estimates from the full modeling are from SI14 

either by single population analysis or co-fitting population pairs and averaging over fits 

(these averages are the results plotted in Fig. 2B). Populations that do not fit the models are 

not reported.

Full modeling of
population relationships

(individual fits)

Full modeling of
population relationships

(averaged fits)

Modeling of population
relationships with

minimal assumptions

Model-based (averaged)
- Model with minimal
assumptions (Z-score)

EEF WHG ANE EEF WHG ANE EEF WHG ANE EEF WHG ANE

Mean Range Mean Range Mean Range

Albanian 0.781 0.092 0.127 0.781 0.772–0.819 0.082 0.032–0.098 0.137 0.129–0.158 0.595 ± 0.112 0.353 ± 0.150 0.052 ± 0.049 1.658 −1.807 1.741

Ashkenazi_Jew 0.931 0 0.069 0.938 ± 0.146 −0.021 ± 0.185 0.083 ± 0.049

Basque 0.593 0.293 0.114 0.569 0.527–0.616 0.335 0.255–0.392 0.096 0.076–0.129 0.569 ± 0.091 0.315 ± 0.124 0.115 ± 0.041 −0.001 0.165 −0.472

Belarusian 0.418 0.431 0.151 0.426 0.397–0.464 0.408 0.338–0.443 0.167 0.150–0.199 0.272 ± 0.094 0.554 ± 0.131 0.174 ± 0.047 1.637 −1.118 −0.158

Bergamo 0.715 0.177 0.108 0.721 0.704–0.793 0.163 0.061–0.189 0.117 0.104–0.147 0.644 ± 0.125 0.248 ± 0.170 0.108 ± 0.053 0.615 −0.503 0.162
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Full modeling of
population relationships

(individual fits)

Full modeling of
population relationships

(averaged fits)

Modeling of population
relationships with

minimal assumptions

Model-based (averaged)
- Model with minimal
assumptions (Z-score)

EEF WHG ANE EEF WHG ANE EEF WHG ANE EEF WHG ANE

Mean Range Mean Range Mean Range

Bulgarian 0.712 0.147 0.141 0.718 0.707–0.778 0.132 0.047–0.151 0.151 0.138–0.175 0.556 ± 0.110 0.328 ± 0.143 0.116 ± 0.043 1.469 −1.372 0.804

Croatian 0.561 0.293 0.145 0.564 0.548–0.586 0.285 0.242–0.310 0.151 0.137–0.172 0.453 ± 0.122 0.407 ± 0.159 0.140 ± 0.046 0.911 −0.768 0.238

Czech 0.495 0.338 0.167 0.489 0.460–0.531 0.348 0.273–0.382 0.163 0.145–0.196 0.402 ± 0.117 0.400 ± 0.162 0.198 ± 0.050 0.744 −0.322 −0.698

English 0.495 0.364 0.141 0.503 0.476–0.536 0.353 0.296–0.382 0.144 0.130–0.169 0.475 ± 0.091 0.357 ± 0.125 0.168 ± 0.043 0.304 −0.028 −0.561

Estonian 0.322 0.495 0.183 0.323 0.293–0.345 0.49 0.451–0.520 0.187 0.172–0.205 0.072 ± 0.121 0.778 ± 0.176 0.150 ± 0.064 2.070 −1.636 0.584

French 0.554 0.311 0.135 0.563 0.537–0.601 0.297 0.230–0.328 0.14 0.126–0.169 0.498 ± 0.097 0.359 ± 0.127 0.142 ± 0.039 0.672 −0.487 −0.060

French_South 0.675 0.195 0.13 0.636 0.589–0.738 0.256 0.111–0.323 0.108 0.088–0.151 0.636 ± 0.116 0.225 ± 0.165 0.140 ± 0.057 −0.003 0.189 −0.558

Greek 0.792 0.058 0.151 0.791 0.780–0.816 0.048 0.019–0.060 0.161 0.150–0.171 0.658 ± 0.098 0.255 ± 0.127 0.086 ± 0.039 1.357 −1.627 1.915

Hungarian 0.558 0.264 0.179 0.548 0.520–0.590 0.279 0.199–0.313 0.174 0.156–0.210 0.391 ± 0.109 0.454 ± 0.153 0.155 ± 0.050 1.437 −1.145 0.371

Icelandic 0.394 0.456 0.15 0.409 0.386–0.424 0.448 0.409–0.473 0.143 0.126–0.170 0.342 ± 0.102 0.476 ± 0.137 0.182 ± 0.045 0.654 −0.204 −0.861

Lithuanian 0.364 0.464 0.172 0.352 0.327–0.384 0.488 0.433–0.527 0.16 0.135–0.184 0.248 ± 0.117 0.548 ± 0.163 0.205 ± 0.052 0.886 −0.367 −0.864

Maltese 0.932 0 0.068 1.298 ± 0.185 −0.509 ± 0.248 0.211 ± 0.079

Norwegian 0.411 0.428 0.161 0.417 0.388–0.438 0.423 0.383–0.450 0.16 0.140–0.181 0.273 ± 0.115 0.557 ± 0.161 0.170 ± 0.055 1.252 −0.831 −0.185

Orcadian 0.457 0.385 0.158 0.465 0.439–0.493 0.378 0.329–0.403 0.157 0.140–0.179 0.395 ± 0.088 0.437 ± 0.122 0.168 ± 0.041 0.798 −0.487 −0.264

Sardinian 0.817 0.175 0.008 0.818 0.791–0.874 0.141 0.058–0.182 0.041 0.026–0.068 0.883 ± 0.128 0.075 ± 0.166 0.042 ± 0.048 −0.510 0.400 −0.024

Scottish 0.39 0.428 0.182 0.408 0.387–0.424 0.421 0.384–0.448 0.171 0.149–0.201 0.286 ± 0.112 0.532 ± 0.156 0.182 ± 0.053 1.091 −0.712 −0.210

Sicilian 0.903 0 0.097 1.012 ± 0.149 −0.131 ± 0.199 0.119 ± 0.060

Spanish 0.809 0.068 0.123 0.759 0.736–0.804 0.126 0.066–0.170 0.115 0.091–0.151 0.856 ± 0.126 −0.015 ± 0.165 0.160 ± 0.049 −0.769 0.855 −0.922

Spanish_North 0.713 0.125 0.163 0.612 0.561–0.660 0.292 0.214–0.365 0.096 0.072–0.126 0.581 ± 0.120 0.298 ± 0.158 0.121 ± 0.046 0.254 −0.038 −0.533

Tuscan 0.746 0.136 0.118 0.751 0.737–0.806 0.123 0.047–0.145 0.126 0.114–0.150 0.734 ± 0.118 0.153 ± 0.160 0.113 ± 0.054 0.141 −0.188 0.249

Ukrainian 0.462 0.387 0.151 0.463 0.445–0.491 0.376 0.322–0.399 0.16 0.148–0.187 0.259 ± 0.123 0.596 ± 0.173 0.145 ± 0.057 1.661 −1.269 0.269

Finnish −0.299 ± 0.204 1.194 ± 0.296 0.105 ± 0.105

Mordovian −0.255 ± 0.173 1.151 ± 0.246 0.104 ± 0.090

Russian −0.303 ± 0.211 1.230 ± 0.301 0.072 ± 0.106
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Figure 1. Map of West Eurasian populations and Principal Component Analysis
(a) Geographical locations of analyzed samples, with color coding matching the PCA. We 

show all sampling locations for each population, which results in multiple points for some 
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(e.g., Spain). (b) PCA on all present-day West Eurasians, with ancient and selected eastern 

non-African samples projected. European hunter-gatherers fall beyond present-day 

Europeans in the direction of European differentiation from the Near East. Stuttgart clusters 

with other Neolithic Europeans and present-day Sardinians. MA1 falls outside the variation 

of present-day West Eurasians in the direction of southern-northern differentiation along 

dimension 2.

Lazaridis et al. Page 30

Nature. Author manuscript; available in PMC 2015 March 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Lazaridis et al. Page 31

Nature. Author manuscript; available in PMC 2015 March 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. Modeling of West Eurasian population history
(a) A three-way mixture model that is a fit to the data for many populations. Present-day 

samples are colored in blue, ancient in red, and reconstructed ancestral populations in green. 

Solid lines represent descent without mixture, and dashed lines represent admixture. We 

print mixture proportions and one standard error for the two mixtures relating the highly 

divergent ancestral populations. (We do not print the estimate for the “European” population 

as it varies depending on the population). (b) We plot the proportions of ancestry from each 

of three inferred ancestral populations (EEF, ANE and WHG).
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Table 1

Lowest f3-statistics for each West Eurasian population

Ref1 Ref2 Target for which these two references give the lowest f3(X; Ref1, Ref2)

WHG EEF Sardinian***

WHG Near East Basque, Belarusian, Czech, English, Estonian, Finnish, French_South, Icelandic, Lithuanian, Mordovian, 
Norwegian, Orcadian, Scottish, Spanish, Spanish_North, Ukrainian

WHG Siberian Russian

EEF ANE Abkhasian***, Albanian, Ashkenazi_Jew****, Bergamo, Bulgarian, Chechen****, Croatian, Cypriot****, 
Druze**, French, Greek, Hungarian, Lezgin, Maltese, Sicilian, Turkish_Jew, Tuscan

EEF Native American Adygei, Balkar, Iranian, Kumyk, North_Ossetian, Turkish

EEF African BedouinA, BedouinB†, Jordanian, Lebanese, Libyan_Jew, Moroccan_Jew, Palestinian, Saudi****, Syrian, 
Tunisian_Jew***, Yemenite_Jew***

EEF South Asian Armenian, Georgian****, Georgian_Jew*, Iranian_Jew***, Iraqi_Jew***

Note: WHG = Loschbour or LaBraña; EEF=Stuttgart; ANE=MA1; Native American=Piapoco; African=Esan, Gambian, or Kgalagadi; South 

Asian=GujaratiC or Vishwabrahmin. Statistics are negative with Z<-4 unless otherwise noted: † (positive) or *, **, ***, ****, to indicate Z less 
than 0, −1, −2, and −3 respectively. The complete list of statistics can be found in Extended Data Table 1.
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